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ABSTRACT

We propose a new wavelet domain image interpolation
scheme based on statistical signal estimation. A linear
composite MMSE estimator is constructed to synthesize
the detailed wavelet coefficients as well as to minimize
the mean squared error for high-resolution signal
recovery. Based on a discrete time edge model, we use
low-resolution information to characterize local intensity
changes and perform resolution enhancement
accordingly. A linear MMSE estimator follows to
minimize the estimation error. Local image statistics are
involved in determining the spatially adaptive optimal
estimator. With knowledge of edge behavior and local
signal statistics, the composite estimation is able to
enhance important edges and to maintain the intensity
consistency along edges. Strong improvement in both the
visual quality and the PSNRs of the interpolated images
has been achieved by the proposed estimation scheme.

1. INTRODUCTION

Image interpolation involves the problem of resolution
enhancement, i.e. recovering a high-resolution image
from its smoothed version. In low-resolution images, the
lost high-frequency components associated with strong
intensity changes are the main information to recover.
Strong intensity discontinuity conveys substantial visual
information because it often happens around various
edges produced by object boundaries. Therefore, how to
process the intensity changes around strong edges is the
central issue for the interpolation problem.

Classic bilinear and bicubic interpolation methods
impose a continuity constraint over the entire image and
tend to produce oversmoothed edges. They also implicitly
assume that a low-resolution image consists of samples
from its high-resolution version, which is not true when
the imaging sensor has a spatial averaging characteristic
over the sampling lattice. Edge adaptive interpolation
schemes [1,2] perform the interpolation in selective
directions to avoid smoothing across edges, with extra
efforts made to deal with edge related artifacts due to

imprecise edge positions and smoothness assumed for the
high-resolution image. Wavelet based methods [3,4] take
advantage of local signal smoothness (Hölder regularity)
observed through multiple scales [5] and actively enhance
the high frequency contents. However, the general
mathematical conclusion involved is obtained by
analyzing continuous signals. When interpolating discrete
time signals, ambiguities about the locations and the signs
of the extrapolated highband coefficients would arise.

In this work, we propose a new wavelet domain
interpolation scheme that explicitly fills in important
detailed coefficients to recover the high-resolution image.
In contrast to other wavelet domain interpolation
methods, we formulate interpolation as a statistical signal
estimation problem, i.e. we want to estimate the high-
resolution image using the statistical information of the
low-resolution signals. We also characterize edge
behavior by a parameterized discrete time signal to
accurately locate edges from low-resolution samples. A
linear composite minimum-mean-squared-error (MMSE)
estimator is proposed to solve the estimation problem.
The composite estimation involves a parametric edge
model and local image statistics. First, local edge
behavior is determined from the low-resolution samples
and used to synthesize the detailed coefficients. Then, a
linear estimator minimizes the estimation error using local
statistical information of the enhanced signals. Both
analysis and experiments reveal that the knowledge of
edge behavior and local image statistics enable the
composite estimator to enhance the cross-edge sharpness
and maintain the intensity consistency along edges, which
are essential for high image quality.

In the following sections, we start by characterizing
edge behavior under lowpass filtering, and then derive the
optimal MMSE estimator for image interpolation. Finally
we show the experimental results which demonstrate the
strength of the statistical approach.

2. WAVELET TRANSFORM AND EDGE
BEHAVIOR

Figure 1 illustrates a 1D discrete wavelet transform with
analysis filters )})({)},(({ ngnh and synthesis filters
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lowpass scaling coefficients fs and highpass detailed

coefficients fd. The synthesis process gives exact
reconstruction of f. Wavelet transform on 2D images can
be realized by separate 1D transforms on image rows and
columns.

To characterize edge behavior under lowpass
filtering, we adopt (1) as the underlying continuous edge
model, which assumes the ideal step function for real
object boundaries and a Gaussian point spread function
for the acquisition system [6].
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model is parameterized as
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where (A, σ, d) indicate the edge strength, transition speed
and sampling bias, and c indicates the base intensity.

Let a discrete time edge signal f(n;c,A,σ,d) be
smoothed with lowpass filter {h(n)} and downsampled by
2, the low resolution signal fs still appears in the shape of
a slightly modified edge as we expect. However, if we
also allow the detailed signal fd to be produced through
highpass filter {g(n)} and downsampling, we observe the
important fact that for sharp edges with small σ, besides
the apparent dependence on A and σ, the local detailed
coefficients in fd also change dramatically and nonlinearly
as the sampling bias d changes. Figure 2 (b)-(c) illustrates
the effect with σ set to 1 and b set to 0 and 0.5
respectively. Two facts about edge behavior are used in
the following analysis. First, a strong intensity change in
the high-resolution signal causes a strong intensity change
at the corresponding location in the low-resolution signal.
Second, the knowledge of edge parameters (A, σ, d) are
sufficient for determining the local detailed coefficients.

Now we consider f to be the unknown 1D discrete
time signal taken from an entire row or column of a high-
resolution image and assume f can be approximated as the
composite signal of a number of local edges at different
spatial locations
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Suppose that only the smoothed signal fs is available. To
recover the significant detailed coefficients of fd, our basic

idea is to obtain an estimate of local edge parameters (Ai,

σi, di) from the low-resolution signal fs and use this
information to fill in the important coefficients of fd.

3. MMSE ESTIMATOR FOR IMAGE
INTERPOLATION

We formulate image interpolation as an estimation
problem, i.e. given the low-resolution image samples
{fs(x,y)}, we want to estimate the high-resolution samples
{f(x,y)}. To simplify the analysis, here we only consider
the problem of resolution enhancement in one direction.
To achieve complete resolution enhancement, we apply
the interpolation scheme twice. First we interpolate the
image horizontally, and then we apply the same scheme
vertically to the horizontally interpolated image. Let fy
denote the to-be-interpolated high-resolution image row
with vertical index y. fs,y denotes the y_th row in the low-
resolution image and fd,y denotes the y_th row of the
unknown detailed coefficients. Figure 3 helps to illustrate
the notation. In particular, we consider the estimation of
fy(x), the high-resolution image pixel indexed by (x,y).
Under the minimum-mean-squared-error (MMSE)
criterion [7], the optimal estimator for fy(x) is given by the
following conditional mean

],1,0;|)([)(ˆ , MkfxfExf kysyy ±±== + L (4)

In practice, strong correlation exits only in local image
region, so M can be set small. Direct evaluation of (4)
requires the knowledge of joint distribution of fy and
{fs,y+k}. This is difficult to obtain when fy is unknown.
Consequently, we propose the following linear composite
MMSE estimator as a replacement,
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Figure 1. 1D Wavelet transform
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Figure 2. (a) Discrete time edge model; (b)-(c)
Scaling coefficients fs and detailed coefficients
fd. (b) σ=1, b=0; (c) σ=1, b=0.5.
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where ak and C are scalars. Denote ]|[
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The estimator is implemented in two steps. First, fy is

estimated as k
yf

~
using the information from the k_th

neighboring row fs,y+k in the low-resolution image. We
call this step the estimate by row.It involves the use of
1D edge model. Then a linear MMSE estimator estimates
fy(x) by minimizing the mean-square-error(MSE) over the

linear class Cxfa k
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3.1. Estimate by row

The synthesis of fy is given by
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where 2↑ denotes the linear operation of upsampling by
2, so we have
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We apply the ideas discussed in section 2 and solve the

estimate ]|[
~

,,, kysyd
k

yd ffEf += . Assume the k_th

neighboring row fy+k can be approximated as the
composite signal of a number of edges

2/))/)((1( 2∑ −++ i ii idnerfAc σ . Around di there is an

edge segment crossing row fy+k that causes the local
intensity change on fy+k as ),,,;()( iiiiky dAcnenf σ=+ .

Then the k_th neighboring row fs,y+k(n) in the low-
resolution image fs has a local intensity change around di

/2 as
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So the parameters ),,,( iiii dAc σ can be estimated from

fs,y+k around di /2 by solving the least square (LS) problem

∑ ∑
∈

+ −−
)2/(

2
,

),,,(
|),,,;2()()(|minarg

idNn m
iiiikys

dAc
dAcmnemhnf σ

σ

(10)
Once the LS estimates ),,,( iiii dAc σ are obtained, we

estimate the direction of the edge segment crossing row
fy+k. As illustrated in figure 3, we use the edge segment
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to match the local pixels around (di/2,y+k) in fs and
determine the edge orientation θi. Then the estimates of
detailed coefficients around di/2 in fd,y is given by
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The estimate-by-row step is summarized as follows:
1. Check the k_th neighboring row fs,y+k of the low-

resolution image. If a strong intensity change is found

at some location, perform the LS estimation in (9) to
obtain the local edge parameters ),,,( iiii dAc σ . Use

(10) to estimate edge orientation θi.

2. Use (12) to synthesize the detailed coefficients in k
ydf ,

~

around 2/id . Then use (8) to obtain the estimate k
yf

~
.

3. Apply the same procedure to each row of the image.
For every row fy, we obtain (2M+1) high-resolution

estimates-by- row, ]|[
~

, kysy
k
y ffEf += (k=−M,…M).

Based on the family of parametric edge models, the
estimate-by- row implements a nonlinear estimator for the
high-resolution signal using partial information from the
low-resolution signal. As we will see, resolution
enhancement around strong edges is achieved by the
estimates.

3.2. Linear MMSE

The linear MMSE (6) finds the optimal linear
combination of the estimates-by-row that minimizes the
estimation MSE. Only first and second order statistics of

k
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~
are involved to solve the optimal {ak} and C [7],
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where ),( ⋅⋅Cov denotes covariance function. The following

facts are easily verified:
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{ak} and C to be solved by 2M+2 linear equations,
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and E[fy(x)] be evaluated as ∑
−=+

=
M

Mk
y xfxfE k

y
M

)(
~

)]([
12

1
.

C(x,y)(j,k) is adaptively evaluated using the neighboring

pixels around (x,y) in )}(
~

{ xf k
y ,

Figure 3. Interpolation lattice
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The linear MMSE estimate is summarized as follows:
1. For sample (x,y), evaluate the local statistics E[fy(x)]

and C(x,y)(k,j) using the estimates )}(
~

{ xf k
y in the local

region. Solve (15) to get optimal {ak} and C. Use (6) to
compute the composite estimate of f(x,y).

2. Apply the same procedure to every sample in f.
The linear MMSE estimator combines the estimate

results by partial information in an optimal way such that
the estimation MSE is minimized. This estimator imposes
spatially adaptive filtering on signals interpolated with
partial information and subsequently assures the intensity
consistency along the locally enhanced edges.

4. EXPERIMENT RESULTS

We applied the linear composite MMSE estimation
algorithm to image interpolation. Compared with bilinear
and bicubic schemes, the MMSE estimation scheme
produces clearer boundaries in the interpolated images. In
addition to sharpening strong edges, the linear estimation
step assures the intensity consistency along edges and
avoids unnecessary artifacts around enhanced edges.

Figure 4 shows the example of a subregion from the
interpolated Lena image by different methods, where the
image is interpolated to four times the original size. Since
the wavelet coefficient synthesis deals with sparsely
located strong edges, as we expect, the improvement of
the visual quality is more obvious in the regions
containing strong edges than in the regions with many
weak edges such as in textures. In Table 1, we show an
example of the PSNR improvement by the proposed
estimation approach with M set to 1. The numbers were
obtained from interpolating the smoothed Lena image to 2
and 4 times the size. The full size (512x512) image was
first smoothed by the lowpass filter and downsampled.
Then the smoothed image was interpolated to full size and
compared with the original image. A 4~5dB gain is
achieved by the proposed estimation algorithm.

5. CONCLUSIONS

In this work, we used signal estimation techniques to
solve the interpolation problem. We proposed a linear
composite MMSE estimator to recover the fine-resolution
image from the low-resolution samples. An edge model
based nonlinear estimator synthesizes the important
detailed coefficients with partial information obtained
from low-resolution samples. A standard linear estimator
then minimizes the MSE of the recovered image using
knowledge of local statistics of previously estimated
signals. Subsequently, strong edges are enhanced by the

model based coefficient synthesis while the intensity
consistency along edges is maintained by the subsequent
linear estimator. The interpolation results demonstrate the
strength of the statistical approach in achieving better
image quality and better signal estimation. Further study
includes extending the statistical analysis to the problem
of multiscale image modeling.

Method × 2 (dB) × 4 (dB)
Bilinear 28.84 23.35
Bicubic 29.11 23.26

Proposed 33.78 28.56
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Table 1. PSNR comparison of different
interpolation methods

(a) (b)

(c)
Figure 4. Images produced by different
interpolation methods. (a) Bilinear; (b) Bicubic;
(c) Linear composite MMSE estimator.


